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1. Introduction

The theme of this conference is “Toward Millimeter Accuracy”. There are a number of
effects that can cause systematic errors in laser ranging at the millimeter level. These effects
are difficult to see in orbital analysis but can be calculated analytically using computer
models of the retroreflector array and the laser ranging system.

The data shown in this report has been calculated theoretically. Some of the results are
confirmed by experimental data. The rest would required additional experiments to verify
whether the analysis is correct.

Some of this work was funded by NASA. The rest was done privately as part of an informal
proposal for funding to participate in the activities of the Signal Processing working group.
The results of this proposal effort are being presented at this conference to illustrate the
kinds of problems that can be studied and the results that can be obtained relative to the goal
of achieving millimeter accuracy. The computer models that have been developed are
described in Appendix A.



2. Diffraction patterns of single cube corners.

A. Diffraction patterns of a coated circular cube corner.

                         (A) No Dihedral                                   (B)  On first ring

                   ( C)  Between rings 1 & 2                          (D) On second ring

                   (E) Between rings 2 & 3                          (F) On third ring

Figure 1. Coated 1.5 inch cube corner with various dihedral angle offsets.



Figure 1 shows some diffraction patterns of a perfect circular coated 1.5 inch cube corner
with index of refraction n =1.461 for different dihedral angle offsets. The size of the plots is
from -50 to +50 microradians in both dimensions. The patterns are displayed as inverted
gray scale plots. Part (A) is a logarithmic plot. Parts (B) - (F)  are linear plots.

The beam spread γ if the three dihedral angles of a cube corner are offset by an angle δ is
given by the equation

γ δ=
4
3

6n (1)

where n is the index of refraction. At normal incidence the geometrical optics solution is six
spots in the form of a hexagon.

Part (A) of the figure shows the diffraction pattern with no dihedral angle offset. The
diffraction pattern is displayed as a logarithmic plot in order to show the rings. In a linear
plot, only the central lobe would be visible. The three rings are at 22.82, 37.40 and 51.63
microradians.

Part (B) shows the diffraction pattern with a dihedral angle offset .986 arc seconds. Using
equation (1) for this offset gives a beam spread of 22.82 microradians, the same as the first
ring. Because of diffraction effects, the six spots that would exits in the  geometrical optics
solution coalesce into a smooth ring.

In part (C) the dihedral angle of 1.30 arc seconds is trying to create spots between the first
and second rings. The pattern shows hexagonal symmetry outside the first ring.

In part (D) the dihedral angle of 1.62 arc seconds gives a beam spread from equation (1) of
37.40 microradians, the same as the radius of the second diffraction ring. The second ring is
the brightest, but is not as smooth as the first ring.

In part (E) the dihedral angle of 1.92 arc sec is trying to put spots between the second and
third rings. The pattern is more complicated.

In part (F) the dihedral angle offset of 2.2 arc seconds gives a beam spread from equation
(1) of 51.63 arc sec, the same as the third diffraction ring. The third ring is the brightest and
there are six spots at the position of the geometrical optics solution.

B. Diffraction patterns of an uncoated circular cube corner.

Figure 2 shows diffraction patterns of a 1.5 inch diameter circular uncoated cube corner.
The first column (left) shows the total energy. The second column (middle) shows the
component of the reflected energy that is in the same (parallel) polarization state as the
input. The third column (right) shows the energy in the orthogonal component. The first
column is the sum of columns two and three.

Parts (A), (B), and (C) of figure 2 are for circular polarization with no dihedral angle offset.
Part (B) has triangular symmetry and the energy is primarily in the central lobe. Part (C)
has hexagonal symmetry and the energy is primarily in the ring of six spots. The total
energy in part (A) does not have perfect hexagonal symmetry, but there are six spots around
the central lobe that are approximately in the shape of a hexagon.



Circular polarization

No dihedral angle offset

     (A) Total energy                (B) Parallel component        (C) Orthogonal Component

Dihedral angle offset 1.25 arc seconds

     (D) Total energy                (E) Parallel component         (F) Orthogonal Component

Linear vertical polarization

No dihedral angle offset

     (G) Total energy                (H) Parallel component         (I) Orthogonal Component

Dihedral angle offset 1.25 arc seconds

      (J) Total energy                (K) Parallel component        (L) Orthogonal Component

Figure 2. Diffraction pattern of an uncoated 1.5 inch cube corner with, and without, a
dihedral angle offset, for circular and linear input polarization.



Parts (D), (E), and (F) are for circular polarization with a dihedral angle offset.

Parts (G), (H), and (I) are with linear vertical polarization and no dihedral angle offset. Parts
(H), and (I) show symmetry from left to right. The total energy in part (G) has six spots
around the central lobe that are approximately in the shape of a hexagon with left to right
symmetry. Parts (G), (H), and (I) have been observed experimentally (see figures 3, 4, and 5
of reference 1).

Parts (J), (K), and (L) are for linear polarization with a dihedral angle offset. There is an
interaction between the linear polarization and the dihedral angle offset that  creates a
“dumbbell” type pattern aligned with the polarization vector. The patterns show left to right
symmetry.

With no dihedral angle offset the total energy as shown in parts (A) and (G) has a nearly
hexagonal shape. With a dihedral angle offset, the total energy for circular polarization has
approximately circular symmetry. The total energy for linear polarization has a “dumbbell”
shape.

In an array of cube corners with no dihedral angle offset, the six spots around the central
peak can be made into a reasonably smooth ring by having a distribution of orientations for
the cube corners. However, this cannot be done with a dihedral angle offset and linear
polarization because the interaction between the polarization and the dihedral angle offset
produces a “dumbbell” shaped pattern aligned with the polarization vector.

3. Basic principles of retroreflector array design.

A. Geometry of the array.

For a single cube corner, the range correction can be calculated to a high degree of accuracy
from the index of refraction and the angle of incidence. However, a single cube may not
provide adequate signal strength or adequate angular coverage.

For a planar array of identical cubes all at the same orientation, the range correction will be
the same as that of a single cube at the center of mass of the array. In practice,
manufacturing imperfections cause variations in the reflecting properties of different cubes
that can cause changes in the range correction.

The diffraction pattern of a cube corner depends on the incidence angle. For an array of
cubes at different orientations (such as a spherical array), the range correction will be
different at each point in the far field diffraction pattern.

B. Size of the array

A single retroreflector acts like a point reflector. There is no pulse spreading and no
uncertainty in the range correction. If the target consists of a number of cube corners at
different distances along the line of sight, there will be spreading of the pulse. In order to
minimize range uncertainties, the range depth of the array should be kept as small as
possible.



C. Velocity aberration and diffraction.

Because of velocity aberration, the center of the return beam is deflected away from the
source by the angle 2v/c where v is the component of the satellite’s velocity perpendicular to
the line of sight. The signal at the receiver will depend on the intensity of the diffraction
pattern of the cube corners at an angle 2v/c from the center of the return beam. Having a
smooth diffraction pattern at 2v/c will minimize the variations in the cross section and range
correction.

The smoothest part of the diffraction pattern is the central lobe. For a coated cube corner the
first zero is at 1.22 λ/D where λ is the wavelength and D is the diameter of the cube corner.
In low earth orbit, the cube corner would have to be quite small to put the receiver on the
central lobe. Using the first ring as in Figure 1(B) would also produce a smooth pattern
with a coated cube corner and allow the use of a larger cube.

Uncoated cubes have a natural beam spread with six spots around the central lobe. This is
the result of polarization effects caused by total internal reflection at the back faces. The
beam is wider than for a coated cube without the need for a dihedral angle offset.

D. Thermal gradients

The diffraction pattern of a cube corner can be severely degraded by thermal gradients in the
material. The larger the cube corner the greater the sensitivity to thermal gradients because
of the longer optical path lengths and the larger total temperature difference for a particular
gradient. With a linear vertical temperature gradient the effect on the central irradiance of a
coated cube corner is proportional to the square of the diameter of the cube corner. Another
problem in coated cube corners is absorption of sunlight at the metalized back reflecting
faces.

E. Dihedral angle offsets.

It is difficult (and expensive) to manufacture a cube corner with a specific dihedral angle
offset. The smaller the tolerance the greater the cost. A tolerance less than .5 arc seconds
could result in a lot of cube corners being rejected or re-manufactured.

One reason for having a specific dihedral angle offset is to be able to model the transfer
function of the array. For the purposes of modeling it does not really matter what the
dihedral angle is as long as its value is known. Measuring and recording the angles can be
more cost effective than setting tight tolerances as long at the angles are within the range
needed to achieve the necessary beam spread.

F. Coated vs uncoated cube corners.

The choice of coated or uncoated cubes will depend on the requirements. Some of the
properties to be considered are the following:

a. Uncoated cube corners lose total internal reflection starting at about 17 degrees incidence
angle. In a spherical satellite this has the effect of reducing the range depth. Having less
range depth reduces the pulse spreading, coherent variations, and possible variations in
range correction.



b. The reflection from an uncoated cube corner has energy in both polarization components
regardless of the input polarization. Coherent interference occurs only within each
polarization component. In other words, the x component cannot interfere with the y
component and vice versa. This results in better averaging of coherent interference by a
factor of 2 .

c. Uncoated cubes have a higher reflectivity at normal incidence than coated cubes because
of total internal reflection. The helps to compensate for the loss of signal past the cutoff
angle for total internal reflection so as to produce a stronger signal with less range depth.

d. Uncoated cubes have no back faces to absorb solar radiation and contribute to thermal
gradients.

e. Uncoated cubes have no back faces that could peel or be subject to deterioration over long
periods of time.

f. The natural beam spread in an uncoated cube can eliminate the need for a dihedral angle
offset. There is a cost advantage to specifying the dihedral angle as 90 degrees with some
tolerance. A negative dihedral angle offset produces about the same pattern as a positive
dihedral angle offset. Specifying the dihedral angle as 90 degrees with a tolerance of 1/2 arc
second gives the same consistency of performance as specifying the angle as 90 degrees
plus 1/4 arc second with a tolerance of 1/4 arc second.

g. The cutoff angle in an uncoated cube corner can vary from about 17 degrees to the
normal cutoff of about 57 degrees depending on the orientation of the cube corner. To avoid
anomalies in the transfer function for a spherical satellite it is necessary to have a
distribution of orientations of the cube corners. A distribution of orientations is also
desirable to smooth out the pattern since there are six spots outside the central lobe.

h. If linear polarization is used the transfer function with uncoated cubes has a “dumbbell”
shape which can introduce a systematic error if no correction is applied. The problem can be
corrected by applying a correction for the asymmetry. The asymmetry can be eliminated by
using circular polarization.

4. Transfer function of the Lageos retroreflector array.

A. Cross section and range correction at a single orientation
(see original version)

B. Average cross section and range correction
(see original version)

C. Spinning satellite.

Both Lageos 1 and Lageos 2 were launched spinning. The spin rate decreases with time and
is currently quite low for Lageos 1. Even if the satellite were not spinning, the viewing angle
would vary throughout a pass as a result of the observing geometry.

Figure 6 shows the range correction for linear polarization at two points in the far field with
the satellite spinning about its symmetry axis. The first point is on the vertical velocity
aberration axis at x = 0, y = 35 microradians. The red curve is the centroid and the green
curve is the half-max range correction. The second point is on the horizontal velocity
aberration axis at x = 35, y = 0 microradians. The purple curve is the centroid and the blue
curve is the half-max range correction. The range correction is always greater on the vertical
axis. The average value of each range correction in millimeters is shown below.



Case Average           rms      color

Centroid (0,35) 243.3 1.5 red
Centroid (35,0) 240.2 1.7 purple
Halfmax (0,35) 250.6 0.6 green
Halfmax (35,0) 249.9 0.7 blue
Centroid (both) 241.7 2.2
Halfmax (both) 250.2 0.7

The difference between the average centroid at the two points in the far field is 3.1
millimeters. The difference between the average half-max range corrections at the two points
is .7 millimeters.

Figure 7 plots the difference between the range corrections at the two points in the far field.
The red curve is for the centroid and the green curve is for half-max.

Range correction vs satellite rotation angle
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Figure 6. Centroid and half-max range correction vs satellite rotation angle at velocity
aberration (0,35) and (35,0) µrad with linear vertical polarization (y-axis).
A. Velocity aberration x = 0 µrad, y = 35 µrad.

red     = Centroid
green = Half-max

B. Velocity aberration x = 35 µrad, y = 0 µrad
Purple = Centroid
Blue    = Half-max
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Figure 7. Range correction at (0,35) minus range correction at (35,0) µrad.
Red = centroid(0,35)  - centroid(35,0)
Green = half-max(0,35) - half-max(35,0)

The variations in the half-max range correction are smaller than for the centroid since the
half-max correction tends to measure the leading edge of the pulse. These calculations are
for the incoherent case. They do not include the effects of coherence or photon quantization.
These effects cause fluctuations in the range correction from pulse to pulse and can
introduce a bias in multi-photoelectron measurements depending on the type of detection
algorithm used.

D. Coherent variations of the range correction
(see original version)

E. Signal strength dependence.

The signal processed by a laser receiving systems consists of a discrete number of
photoelectrons. If the number of photoelectrons is large, the signal should be a good
representation of the received signal. If the signal consists of a small number of
photoelectrons, there will be variations in the shape of the pulse due to photon quantization.

For half-max detection systems, there will be a shift in the range correction as a function of
signal strength. For single photoelectron returns, the average position of the photoelectron
will be at the centroid of the retroreflector array. For half-max systems with a strong signal,
the average measured position will be the half-max point on the leading edge of the pulse.

Figure 8 shows the results of a Lageos simulation with different pulse detection algorithms
for average signal strengths from .1 to 1000 photoelectrons. The simulation is done for an
orientation of the satellite where the centroid is 241 millimeters from the center of the array.

The rise time of the photo-multiplier is assumed to be .125 nanosecond and the half-max,
half-width of a single photoelectron is 8.6 millimeters. For a photoelectron at the centroid
the half-max point of the return is at 241 + 8.6 = 249.6 millimeters.



The transmitted pulse used in the simulation is 200 picoseconds which gives a one-way
half-max, half width of 15 millimeters for the transmitted pulse. The half width of the return
from the Lageos array (with a zero length input pulse) is about 21 millimeters. Convolving
the transmitted pulse with the Lageos array and the photo-multiplier response gives a half
width of about 27 millimeters for the return pulse. Adding this to the centroid of 241
millimeters gives a value of 268 millimeters for the half-max point on the return pulse for
the strong signal case.

The top curve in blue in figure 8 is the average position of the half-max point on the return
pulse vs signal strength. It starts out at 250 millimeters for single photoelectron returns and
rises to 268 millimeters for strong signals. The green curve is the half-area point and the red
curve (partially obscured by the green curve) is the centroid.

Figure 9 shows the variation of the range correction with signal strength for a set of target
measurements. For the target measurements there is no spreading due to the target. The
only spreading is due to the width of the transmitted pulse and the spreading of the photo-
multiplier. This give a combined spreading of about 17 millimeters. Adding this to the
centroid of 241 millimeters gives a half-max point of 258 millimeters for the strong signal
case.

Range correction vs average number of photoelectrons
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Figure 8. Range correction for Lageos vs number of photoelectrons.
Blue = Half-Max
Green = Half Area
Red = Centroid
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Figure 9. Range correction for target calibration compared to Lageos Half-Max
Blue = Half-Max

Square = Lageos
Circle = Target

Red  = Centroid and Half Area

The blue curve with circles in figure 9 is the position of the half-max point for the target
measurements vs signal strength. The curve with blue squares is the half-max position for
Lageos for comparison. The difference between the blue squares and the blue circles is the
range correction that would need to be applied to Lageos range measurements as a function
of signal strength. It is about 10 millimeters for this set of station parameters.

5. Transfer function of the TOPEX retroreflector array.
(see original version)

6. Transfer function of the WESTPAC retroreflector array
(see original version)
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Appendix A. Description of analysis programs

 The original versions of these programs were written in the early 70’s. The current versions
have a number of new features that have been added recently.

TRANSFR   This program is described in SAO Special Report 382. It is optimized for
computing an N x N diffraction pattern of an array. Matrices for cross section, centroid
range correction, and pulse spread (r.m.s width) are computed. The program has been
recently updated to include recessed cube corners such as used on WESTPAC.

RETURN   This program is like TRANSFR except that it uses versions of the diffraction
subroutines that compute only a single point in the far field. The pulse shape is computed to
determine the centroid, half-area, peak, and half-max points. The program can also model
coherent interference and photon quantization using a random number generator. The
program has been recently recreated after not being used for 25 years. Some work remains
to be done to get the program fully operational.

LRSS     (Laser Receiving System Simulation). This program can use a pulse shape
computed by RETURN or generate a Gaussian input pulse. The average number of
photoelectrons is used to generate random signal strengths using a Poisson distribution.
Photoelectrons are randomly distributed in the area under the pulse. The pulse shape is
plotted and analyzed for various detection algorithms - centroid, half-area, half-max, and
pulse analyzer (with a centroid algorithm). The program was recently recreated after not
being used for 25 years.

DIFRACT  This program computes the diffraction program of a single cube corner at
normal incidence by numerical integration of a 101 x 101 array of phases. It can model the
effect of a temperature gradient expressed as a quadratic function in three dimensions with
origin at the center of the front face. New features have been added to model various types
of curvature of the wavefront expressed as a polynomial function of the position from the
center of the front face. Modification have been added to produce phase plots, and simulated
interferograms.

ECCENTRIC This program computes signal strength in photoelectrons for a specific set
of station parameters for a satellite in an eccentric orbit. It is a recently written program
based on an old program, RNGEQN, which modeled only circular orbits. The cross section
of the satellite can be given as a constant, a table vs velocity aberration, or a two-dimensional
matrix. The program can accept a set of matrices vs incidence angle on the array assuming
the satellite is gravity gradient stabilized. The cross section matrices are computed by
program TRANSFR

Appendix B. Tables for signal strength dependence of the Lageos range 
correction. (see original version)

Appendix C. Theory of programs RETURN and LRSS (see original version)


